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and with a 0 = 3.74 J~, the diffuse scattering in the 
vicinity of hlhgh a = 100 (hkl = 200) in the h~h20 plane 
was computed by means of equation (8) and the size 
effect function of Fig. 1. I t  is compared with the 
experimentally measured distribution in Fig. 2. The 
experimental data are those shown in Fig. 4 of Part I. 

4. D i s c u s s i o n  

:By a rearrangement of the expression for the diffuse 
intensity associated with the atomic size effect, it has 
been shown that  Huang's integral approximation is 
unnecessary and that  the diffuse scattering may be 
expressed in a very simple form. In spite of the fact 
that  the CuaAu specimen used contained a significant 
degree of short-range order, agreement between ob- 

served and calculated intensity distributions in the 
vicinity of the Bragg maxima is quite good. I t  is 
interesting that  the Laue monotonic diffuse scattering, 
the second term of equation (4), here completes a 
square, while in the case of short-range order with no 
size effect, it is the leading term of a Fourier series. 

Equation (8) has been arranged so that  the size 
effect function of Fig. 1 is quite general and may be 
used to compute the diffuse scattering for any close- 
packed cubic solid solution. 
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A N o t e  o n  t h e  M a g n e t i c  I n t e n s i t i e s  o f  P o w d e r  N e u t r o n  D i f f r a c t i o n  
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General intensity formulae of powder neutron diffraction lines are given for magnetic structures 
with a single-spin-axis as a func$ion of the spin direction with respect to the crystallographic axes. 
If we disregard the vector properties of spins and assign a positive or negative scattering amplitude 
to the magnetic atoms, these scalar scatterers constitute a 'configurational symmetry' of the magnetic 
structure. When this symmetry is tetragonal, rhombohedral or hexagonal, the powder intensities 
cannot provide more information than the angle between the spin direction and the unique axis of 
the structure. The ambiguity of spin directions in c¢ Fe20 a, NiAs and MnO type structures is dis- 
cussed. 

1. In troduc t ion  

Neutron intensities of magnetic origin at a Bragg 
reflection can be obtained by straightforward calcula- 
tions based upon the fundamental formula of Halpern 
& Johnson (1939). If suitable single domain crystals 
are available for neutron diffraction studies of mag- 
netic compounds, the interpretation of the magnetic 
intensities gives a unique solution for the spin arrange- 
ments. However, if one must depend upon the powder 
data alone, some ambiguities arise because of the super- 
position of several iron-identical reflections with the 
same Bragg angle 0. 

I t  has been known that  the spin direction cannot 
be deduced from the powder data of cubic ferro- 
magnetics, such as Fe, because any spin direction 
with respect to the crystallographic axis gives the 
same magnetic intensities if the domains are oriented 
randomly. The ambiguity of spin structures in cubic 
antiferromagnetics of the MnO-type has been dis- 
cussed in detail by Li (1955) and by Keffer & O'Sulli- 
van (1957) considering the possibility of multi-spin- 
axis orientations. 

(a) (b) 
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b , " ~  
(c) (d) 

Fig. 1. Examples of antiferromagnetie spin arrangements, 
(a) 1VInO type, (b) NiAs type, (c) Rutile type, (d) F%O a 
type--after Shull & Wollan (1956). 
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Table 1. Crystal symmetry and co~figurational symmetry of magnetic structures shown in Fig. 1 

(a) MnO-type 

(b) NiAs-type 

(c) MnF~-typo 

(d) Fe~Oa-type 

Crystal st~azcture 

Cubic, F m 3 m  
NaCl-type with a 0 

Hexagonal,  P6amc 
Ni at (0, 0, 0), (0, 0, ½) 

Tetragonal P4~Jmmm 
Rutfle-type 
Mn at (0, 0, 0), (½, ½, ½) 

Rhombohedral  R3c 
Fe at  q - ( u , u , u )  

± (½+u, ½+u, ½+u) 

Magnetic s~ructure 

~hombohedra l ,  R3, a = 2% 
+p at (0, 0, 0) 

(0, ½, ½) © 
± (0, ~, ~) © ± (L ~, ½) © 

Hexagonal,  P 6 m m  
-kP at (0 ,0 ,0)  
- p  at (0, 0, ½) 

Tetragonal P 4 / m m  
+p at (0,0,0) 
- p  at (½, ½, ½) 

Rhombohedral ,  R3c for Cr20 a 
(R3 for Fe~Oa) 
+ p  at  (u, u, u), (u+½, u-b½, u-k½) 
- -p  at  (--u,  - -u ,  --u),  ( i - - u ,  ½--u, i - - u )  

I t  is the purpose of this note to demonstrate tha t  
a similar ambiguity may  occur in other crystallo- 
graphic systems with high symmetries. For example, 
the spin directions within the plane perpendicular to 
the unique axis of the crystal, as shown in Fig. 1 (b) 
and (d), cannot be determined by the powder data  
alone. The conditions under which the ambiguities 
occur will be described and a convenient formula for 
the  intensity calculations will be given for the tetra- 
gonal, rhombohedral and hexagonal systems. 

mation should be carried out over all possible com- 
binations of h,/c and l, which result in the same Bragg 
angle. 

For the present discussion, it will be convenient to 
visualize the magnetic structure as consisting of atoms 
with a scalar scattering amplitude p~, which may be 
either positive or negative, while the spin direction is 
represented in the intensity formula by qe only. We put  

F ( m ) j , ~ l  = .~  pi exp [ 2 ~ j ( h x ~ + I c y ~ + l z ~ ) ]  . (7) 
i 

2. P o w d e r  i n t e n s i t i e s  of  m a g n e t i c  s c a t t e r i n g  

The magnetic structure factor Fakz for a (hlcl) reflection 
can be written as (see, for example, Bacon, 1955). 

Fh~z = ~P~q~ exp [2zej(hxi+kyi+lzi)],  (1) 
i 

with 
p = (e~/mc~). ~,. S.  f ,  (2) 

q = e ( e . k ) - k ,  (3) 

where e is the unit  scattering vector and k is the unit 
vector parallel to the magnetic moment of the scat- 
tering atom. Denoting the angle between e and k 
as v/, we obtain from equation (3) 

qe = sin e ~ . (4) 
t~ 

If  we consider the case where all the qi s are parallel 
or antiparallel to each other 

F ~ = q~[~ ± p~ exp [2z~j(hx~+ky~+lz~)]] 2 . (5) 
i 

The sign of pi is determined by the direction of q~. 
For convenience we consider tha t  p~ can assume posi- 
tive or negative values and drop the signs ±.  Now, 
the  intensities of the powder lines can be writ ten 

I = K.  Z F~kl 
hkl 

-- K.  ~ q~kz[~ P~ exp [2z~j(hx~+ky~+lz~)]] ~ , (6) 
hkl i 

where K is a constant at  a given angle 0 and the sum- 

This F(m)h~¢~ is thus computed formally in the same 
way as the normal structure factor of nuclear scat- 
terers. The only difference is tha t  equivalent atoms 
may possess values of the scattering amplitude p~ 
which are different not only in magnitude, because 
of the spin state of the atoms, but  also in sign, because 
of the spin direction. 

Let us consider the symmetry  of the pi's of the 
magnetic structure. This may  be called 'configura- 
tional symmetry '  of the magnetic structure. This 
symmetry  may not be equal to the 'chemical sym- 
metry '  of the crystal, because F(m) is concerned with 
magnetic atoms only. This situation is illustrated in 
Table 1. The configurational symmetry  allows several 
F(m)a~ to assume the same absolute value for dif- 
ferent combinations of +h, ±k  and +l, but  each 
F(m)h~z may be associated with a different value of q~. 
For  example, (hkl), (klh) and (lhlc) planes are equiv- 
alent if the symmetry  is rhombohedral. This group 
of equivalent hkl reflections may be represented by 
{hkl}. 

We obtain from equations (6) and (7) 

I = K . ~  j{hkl}(q~).F(m)~l}, (8) 
{hk~ 

where j(hkl)is the multiplicity of F(m)(hkz} and (q2} 
is the average value of q~ for the j equivalent F(m)'s .  
The summation {hkl} must be carried out if there is 
more than one non-equivalent F(m) 's  at  the same 
Bragg angle. An uncertainty in the magnetic structure 
may arise if the equal intensities are obtained with 
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different  sets of F(m)  ~ and <q~>, as was demonstra ted  
in  the  case of ant i ferromagnetics  of the MnO-type. 
I n  this  note, however, we shall  l imit  ourselves to the 
case where equivalence of the intensit ies is a result  of 
equiva lent  <q~> with different spin directions. 

This picture is, of course, correct only for the 
single-spin-axis solutions. The t r iangular  spin con- 
f igurat ion given by  Yafet  & Ki t te l  (1952) and the 
mult i -spin-direct ions discussed by  Keffer  & O'Sul l ivan 
(1957) are exceptional  cases where equation (6) cannot 
be used. 

3. C a l c u l a t i o n s  of <qZ> 

The value of q~ can be expressed as a funct ion of the 
direction cosines of e and  k using equat ion (3). 
However,  this s t raightforward method is ra ther  
l eng thy  when we must  deal with systems with oblique 
axes. A more convenient formula for the general case 
m a y  be obtained if we assume tha t  the spin direction 
is the normal  to a plane (hokolo). The angle between 
the  normals  of the planes (hkl) and (hokolo) can be 
~Titten as (see, for example,  James ,  1954). 

cos ~ = (ha* + kb* + lc*) (h0a* + k0b* + 10c* ) ddo, (9) 

or mul t ip ly ing  out 

cos ~ = {hhoa*~+kkob*~+llo c*~ 
+ (hko+hok)a*b* cos 7 " +  (klo+kol)b*c* cos 0¢* 
+ (lho+loh)c*a* cos f l*}ddo, (10) 

where a*, b*, c* cos a*, cos fl* and cos ?* refer to 
reciprocal space and d(hkl) and d o (hokolo) are the spac- 
ing of the planes (hkl) and (hokolo) in the real space. 

:From equat ion (4) 

<q~> = 1 -  <cos ~ ~7> • 

In  order to obta in  <q2>, cos ~ of equation (10) must  be 
first squared and summed over equivalent  (hkl). 
A table  of general mul t ip l ic i ty  factors and equivalent  
reflections in various systems is given in a concise 
form in The International Tables (1952). The f inal  
formula  of (q~> should be expressed as a funct ion of 
the  angles, ~ ,  q~, and q~c, between the spin direction 
and  the crystallographic axes. This can be done by  
utilizing the same equation (10), which gives cos ~ as 
a funct ion of h 0, k 0 and 10, if we put  (hkl) as (100), 
(010) and (001). 

(A) Cubic 

cos ~ = (hho+kko+llo)a*2ddo 
<cos ~ ~> = ½(h ~.+k ~+l~)(hi+ki+10~)a*~d~dl = ½. 

(B) Tetragonal 

cos ~ = { (hh o + kko)a *~ + llo c.2} dd o . 

Summing up for the equivalent  reflections (hkl), 
(hkD, ( k f d ) a n d  (k-hl--) 

<cos ~ v > = { ½ ( h ~ + k ~ )  2 2 ,4  2 2 , 4  2 ~ (ho÷ko)a +l  loc }d d o 
= {½(h2+k2)a *~ sin ~ q~+l~c .2 cos ~ ~}d 2 , (11) 

where ~ is the angle between the spin direction and 
the c axis. 

(C) Hexagonal 

cos ~/ = [ { ( hho .4. kko) + ½ ( hko .4. hok ) }a .2 + llo c.2] dd o . 

Summing up for the equivalent  reflections, (hkil), 
(hkil), (kihl), (kihD, (ihkl), and (ihkD, where i = 
-(h+k) 

<cos~> = {½ (h2 + k~ + Mc) (h2o + k~o + hoko)a*4 +121~c*4} d2 4 
= {~(h~ + k ~. + hk)a*~ sin~ ~ + l~*~ cos~ ~} d ~- , 

(12) 

where ~ is the angle between the spin direction and 
the [0001] axis. 

(D) Rhombohedral 

cos V = {(hho+kko+llo) 
+ cos a* (hk o + hok + kl o + kol+ lh o + loh)}a .2 dd o . 

Summing  up for the equivalent  reflections (hkl), 
(klh) and (lhk) 

(cos 2 ~) = { 2 ( n - r ) ( n o - r o ) ( 1 - c o s  ~*)2 

+ (n÷  2r) (n0+ 2ro) (1.4. 2 cos ~x*)2}~a*4d2o rig 
= { ( n - r ) ( 1 - c o s  a*) sin s (p 

4. (n÷2r)(1.4.2 cos a*) cos 2 q~}~a*2d ~ , (13) 
with 

n = h2+k2+l  2, r = h k + k l + l h ,  

where ~ is the angle between the spin direction and 
the [111] axis. 

(E) Orthorhombic 

cos ~ = (hhoa*2 + kkoa*2 ÷ llo c.2) dd o . 

Summing  up for the equivalent  reflections (hkl), 
(hkl), (hfcl)and (hkl) 

(cos 2 ~> = (h2h~a .4-4- k2k2o b.4-4-1212c*4)d2d~ 
= ( h2a*2 cos2 ~a÷ k2b*2 cos 2 ~b.4.12c .2 cos 9 ~c)d 2, 

(14) 

where ~a, ~ ,  and ~c are angles between the spin direc- 
t ion and a, b, and c axes, respectively. 

4. Discuss ion  

From the general formulae for (q2> we can arrive at  
the following conclusions as to the l imitat ions of the 
powder technique to determine the spin direction of 
magnetic  structures. :No information is obtained about  
the spin direction if the configurational s y m m e t r y  is 
cubic. When  the symmet ry  is uniaxial ,  tha t  is, ei ther 
tetragonal ,  hexagonal  or rhombohedral ,  the  spin 



GEI~ SHIRA:NE 285 

direction cannot be defined except for its angle with 
the unique axis of the magnetic structure. 

This is not an unexpected result, especially if we 
realize the fact that  q2 is a function of second order 
terms of the direction cosines of e and k, and the sum- 
mation over equivalent reflections may cancel the 
cross terms and leave only the terms referring to the 
unique axis. I t  may be pointed out here that  consider- 
able similarity exists between the expression for 1/d 9 
and (cos ~ ~7), especially in the cases of tetragonal, 
hexagonal and orthorhombic symmetries. We may 
examine some of the known magnetic structures 
(see, for example, Bacon, 1955, and Shull & Wollan, 
1956), in the light of the present results (see Fig. 1). 

In most of the cases of uniaxial crystals the spin 
lies in a direction parallel or perpendicular to the 
unique axis. When it coincides with the unique axis 
(9 - 0), the spin direction can be given by the powder 
data unambiguously. This is not true, however, when 
it is perpendicular to the unique axis (q0 = 90°). 
Although in some cases special directions were as- 
sumed within the plane, it must be recognized that  
any other direction within this plane satisfies the 
powder data equally well. 

One known case with ~ not equal to 0 ° or 90 ° is 
tetragonal l~iF 2, in which the spin direction was 
found to be 10 ° off the tetragonal axis (Erickson, 
1953). In this case, Erickson stated clearly that  the 
data could not be interpreted to give more information 
than the inclination of the moment with respect to 
the tetragonal axis. 

The spin configuration of the Mn0-type antiferro- 
magnetics shown in Fig. 1 (a) presents an interesting 
example. In this case, the configurational symmetry 
is rhombohedral although the chemical symmetry is 
cubic. I t  can thus be concluded that  the spin direction 
cannot be defined except for its angle with the [111] 

direction. The spin directions of this group of com- 
pounds were first studied by Shull, Strauser & Wollan 
(1951) and recently reexamined by Roth (1958). 
Although the uncertainty of the spin direction within 
the (111) plane was recognized, the general uncertainty 
associated with rhombohedral symmetry was over- 
looked and the spin directions were obtained by a 
trial-and-error method. A simple formula for (q2) can 
be obtained from equation (13) by assuming cos~* = 0 

. a*2d 2 
(cos 2~]) = ( (n - r )  sin 29+(n÷2r )  cos 2~) ~ . 

Then the problem becomes a one parameter problem 
to determine ~ from the observed intensities. 

The author is very grateful to Drs F. Jona, W. J. 
Takei, and T. 0guchi for helpful discussions. 
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X-ray Scattering by Bundles of Cylinders 
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The effects of interparticle interference on the low-angle scattering by a bundle of parallel cylinders 
in close-packed hexagonal array are calculated. The application of the results to the elucidation 
of the sizes of coherent hexagonal aggregates from X-ray scattering measurements obtained from 
both solid samples and solutions of long chain molecules is discussed; the calculations may also be 
of value in the interpretation of light-scattering results from similar solutions. 

In troduc t ion  

Interference effects in X-ray scattering at small angles 
are well known and theoretical and experimental 

discussions have been published both for scattering 
by spheres (e.g. Lund & Vineyard, 1949; O s t e r &  
Riley, 1952a; Guinier, Fournet, Walker & Yudowitch, 


